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Abstract

Data analysis often involves the comparison of complex objects. With the ever increasing amounts
and complexity of data, the demand for systems to help with these comparisons is also growing. In-
creasingly, information visualization tools support such comparisons explicitly, beyond simply allowing
a viewer to examine each object individually. In this paper, we argue that the design of information
visualizations of complex objects can, and should, be studied in general, that is independently of what
those objects are. As a first step in developing this general understanding of comparison, we propose
a general taxonomy of visual designs for comparison that groups designs into three basic categories,
which can be combined. To clarify the taxonomy and validate its completeness, we provide a survey of
work in information visualization related to comparison. Although we find a great diversity of systems
and approaches, we find that all designs are assembled from the building blocks of juxtaposition, super-
position, and explicit encodings. This initial exploration shows the power of our model, and suggests
future challenges in developing a general understanding of comparative visualization and facilitating the
development of more comparative visualization tools.

1 Introduction

Scientists, engineers, and analysts work with increasingly large and complex data sets. Visualization tools
are essential to understanding, analyzing and communicating data. Information visualization with complex
data often involves comparison. Comparison tasks appear across many domains such as biology, network
analysis, organic chemistry, medical physiology and homeland security and types of data objects including
graphs, tabular data and surfaces.

While visualization has traditionally focused on tools for examining individual objects, the past few years
have seen an increasing number of systems explicitly designed to address comparison tasks. For example,
successful systems have been demonstrated for comparing large phylogenic trees [101], module relation-
ships within large software systems [68], genetic sequences [107] and other complex data objects. These
systems show the value in developing tools that explicitly support comparison tasks.

Example systems show the potential of, and challenges for, comparative visualization for information visu-
alization. However, they offer only limited assistance in trying to provide comparative visualization more
∗Department of Computer Sciences, University of Wisconsin - Madison, gleicher@cs.wisc.edu
†Department of Computer Sciences, University of Wisconsin - Madison ,dalbers@cs.wisc.edu
‡School of Computer Science, Bangor University, rick.walker@bangor.ac.uk
§School of Computer Science, Physics and Mathematics, Linnaeus University, Växjö, Sweden, ilir.jusufi@lnu.se
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broadly: each new scenario seems to require a specific custom solution, with little guidance available to
inform the design for other applications. To date, however, there has been little discussion of the general
issues common to comparison tasks.

Our premise is that there are issues common to comparison, independent of what is being compared. Devel-
oping an understanding of comparison in general will facilitate the development of future comparison tools.
As a first step in this direction, this paper presents a taxonomy of visual designs for comparison that apply
across the range of application domains and data types. By providing a simple map of the space of designs,
our model can help in understanding the patterns common in the comparison of complex objects.

Specifically, we propose a taxonomy that divides the space of comparative designs into three general cat-
egories, based on how the relationships between the related parts of different objects are encoded. These
three categories – juxtaposition (showing different objects separately), superposition (overlaying objects in
the same space) and explicit encoding of relationships – will be introduced in Section 2. This taxonomy
is independent of the objects being compared: we see examples of all design categories for many different
applications and data types. However, the categories do seem to have issues, tradeoffs and solutions that
apply across domains.

Our model grew out of the Dagstuhl Workshop “Information Visualization” [81]. The three-way taxonomy
was suggested as part of a broader model of generalized comparison by the first author. The Dagsthul “work-
ing group” discussion focused on developing this model, including noting its similarities to taxonomies in
related areas (such as coordinated multiple views [112]). The idea that such a simple model could ade-
quately capture the space was surprising. Therefore, to validate the model, we have conducted a survey
aimed at finding the diversity of comparison solutions across information visualization. This survey not
only confirms that the model covers the range of designs in a meaningful way, but has also helped us refine
the model without increasing its complexity. The survey also helps illustrate the model.

This paper provides a taxonomy for mapping the design space of comparative visualizations. We do not
suggest that one category of designs is superior to another: on the contrary, we find that each strategy has
strengths and weaknesses. The map of the design space can serve to understand trade-offs in selecting
an approach for a new design. We provide a survey of information visualization systems designed for
comparison of complex objects to elucidate and confirm this model. However, our primary conclusion is
that a better understanding of comparison will be valuable in developing specific visualization solutions.

1.1 Problem and Scope

Our focus in this paper is on the comparison of complex objects of similar form. Although comparison
might apply at any level of complexity, it is most useful and important as the objects being considered grow
more complex. For instance, a single bar chart might be considered as a juxtaposition comparison, in which
a user must compare the length of adjacent bars. However, we focus on problems such as comparing two
separate graphs or sequences as the issues of comparison become more pronounced. Similarly, problems
of information fusion, where different types of data must be registered together, may also utilize related
principles. We also place these out of the scope of this article.

Complexity comes in many forms. Generally, it involves objects with many subparts, such as graphs or
sequences. The complexity comes not only from the size (the number of subparts) but also the abstractness
of the information (such as connectedness in graphs) and the subtleness of the patterns within the data.

Visualizing a single complex object can be difficult. However, when performing a comparison additional
issues arise. For example, the viewer needs to find connections both within and between objects. The
relationships may be complex themselves – multidimensional and multiscale. New perceptual issues can
arise, as we will mention later.

2



Preprint: Copy contains subtle differences with final publisher’s version

A key challenge in comparison is dealing with scalability. The comparison problems scales in both the
complexity of the objects and the number of objects to compare. In our survey, we see systems that compare
just two complex objects, such as the AC Plagiarism Detection System [52], Mizbee [96], the Semantic
Graph Visualizer [8], COMBO [43] and SHERLOCK [146], or a larger number of objects, such as Parallel
Sets [13], ETE [69], HNMap [93], The Information Mural [74] and ActiviTree [144].

1.2 How to Compare Objects?

Given that comparing complex objects is difficult, we can ask how visualization systems can provide support
to make it easier. One strategy is to remove the complexity by abstracting it away, turning complex objects
into simpler ones that are easier to compare. This strategy has been applied in comparative visualization
systems either by abstracting the objects themselves, for example Amenta and Klinger [7] abstract trees as
points in a low dimensional space, or by abstracting the relationships between them, and Holten [67] uses
hierarchical edge bundling to portray the relationships between trees. Note that abstraction is orthogonal to
the problem of comparison: after simplification, objects still need to be compared.

Another alternative is that a viewer can be provided with no explicit support for making the comparison
between objects. In such a situation the viewer must examine each object separately. They may look at
objects sequentially, or they might use separate windows side-by-side (or even use separate machines).
Either way, the viewer must rely on his or her memory to make the comparison. Visualizations explicitly
designed to aid with comparison seek to reduce this memory effort.

Our focus in this paper is on visualizations designed to support comparison. Our observation is that while
there is a very diverse array of designs supporting a wide range of situations (e.g. varying data types and
tasks), these designs all seem to combine three basic elements: juxtaposition, superposition, and explicit
encoding. We have limited our scope in this paper to focus on this taxonomy of visual design strategies.

1.3 Related Work

To our knowledge, the only work in the information visualization community that explicitly explore the
range of comparison solutions is Graham and Kennedy’s survey of comparison for the specific data type of
trees [56]. While many of the general issues come up in their survey, their focus is on the various visual
encodings of trees and is therefore specific to this data type. Our taxonomy is orthogonal to theirs, and
could serve as a tool for understanding the different encodings they consider. Although there are numerous
other taxonomies proposed in the literature, none of these consider the issues of comparison. Taxonomies
of tasks [6], data types [114, 145] and algorithms [134] all provide ways of looking at different aspects of
visualizations, and could be combined with our views of comparison strategies.

The broader visualization community also considers comparison. A few works consider comparing com-
parison strategies. Notably, a three-way taxonomy of comparison has been proposed by Pang and col-
leagues [121, 141]. This taxonomy considers the degree of abstraction of the data done before comparison,
and provides a complimentary space to our taxonomy. Other surveys explore designs for applying specific
strategies to specific problems, notably work on visual encodings for flow visualizations that enable super-
position designs [139]. While we believe our taxonomy is valuable to visualization applications beyond
information visualization, we focus on information visualization here.

Our categories are not unprecedented. For example, Roberts [111] uses similar categories (separate, overlay,
fusion) to categorize the types of views in multiple-view coordination systems.
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Figure 1: A simple example of comparative visualizations: comparing two time series. For example, the data might represent mea-
surements from two sensors (X and Y) taken over time. The three basic approaches for comparative visualization are (a) juxtaposition,
(b) superposition, (c,d) explicit encoding of relationships. Two new representations from fusion are shown: (c) signal subtraction and
(d) a time alignment curve, such as produced by dynamic time warping.

2 A Taxonomy of Comparative Designs

Our key observation is that the range of visual designs for explicitly assisting with comparison fall into
three categories. Juxtaposition (or separation) designs present each object separately (i.e. next to each
other, in either time or space). Superposition (or overlay) designs present multiple objects in the same
coordinate system (i.e. on top of one another). A third category of design is explicit representation of
the relationships that directly encodes connections between objects visually. A simple example of these
categories is shown in Figure 1.

Juxtaposition designs place objects separately in either time or space. Such designs rely on the viewer’s
memory to make the connections between objects. However, with proper design, juxtapositions can help the
user shift their attention between objects or see patterns between elements. Tufte calls spatial juxtaposition
designs small multiples and suggests that “comparison must take place within the eyespan” [138]. More
discussion follows in Section 3.2 below.

Superposition designs overlay multiple objects, presenting them at the same place and time. Figure 1(b)
shows two co-located lines that are visually distinguished by color.

Explicit encodings compute the relationships between objects and provide visual encoding of the relation-
ships. Figure 1(c) shows the subtraction of the two objects, and Figure 1(d) shows a time warp alignment.

The three categories can be distinguished by the principal mechanism used to make connections between
objects: juxtaposition uses the viewer’s memory, superposition uses the visual system and explicit encodings
use computation to determine the relationships. The three categories can also be distinguished by how the
correspondences between parts are encoded: in juxtaposition, they are not; in superposition, proximity is
used to encode connections; and explicit encodings use some other visual encodings.

We feel these three categories are fundamental: they provide the building blocks that all comparisons can
assemble. However, the three designs may be combined to create hybrid ones that use elements of two cat-
egories. We have not encountered a hybrid of all three, though it may be possible. Therefore, although our
taxonomy might contain seven different categories (juxtaposition, superposition, explicit encodings, jux-
taposition+explicit encodings, superposition+explicit encodings, juxtaposition+superposition, and all three
combined), we consider only three basic categories and three hybrid categories. Figure 2 illustrates all of
the categories, including some of the key variants of each, on a simple example of comparing a network via
a node-link diagram.

The hybrid categories are important as they provide designs that mix the basic design elements to address
issues in any particular one. However, they are different from the primary categories as they do not introduce
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a) Naı̈ve Juxtaposition
(each network laid out
independently)

b) Juxtaposition (using
similar layouts to aid
comparison)

c) Superposition (in the
same space)

d) Explicit Encoding:
Replacement (upper:
union graph, lower:
intersection graph)

e) Explicit Encoding:
Additive (members of
the intersection shown
added to one of the
graphs)

f) Juxtaposition +
Superposition

g) Juxtaposition +
Explicit Encodings:
Using view coordination
to highlight
correspondences

h) Juxtaposition +
Explicit Encoding:
Additive (intersections
added)

i) Juxtaposition +
Explicit Encoding:
Abstraction (cliques
shown over juxtaposed
views)

j) Superposition +
Explicit Encoding:
Overlay encoding

k) Superposition +
Explicit Encoding: Ab-
straction+superposition
(cliques shown over
superimposed view)

Figure 2: Two networks (illustrated as node-link diagrams) are compared using designs of the six categories, with some of the major
types in categories shown. These designs are meant as an illustration to define the category/type, not as being representative of a
successful strategy for comparing two small networks.
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any new mechanisms. Juxtaposition may be coupled with explicit encodings, for example to use view
coordination to highlight corresponding parts or to draw connections to emphasize them. Superposition
designs are sometimes combined with explicit encodings to overcome clutter: for example showing graph
differences on a union graph. The combination of juxtaposition and superposition is uncommon.

The three primary categories and three hybrid categories form a map of the space of comparative designs,
visualized in Figure 3. While some visualization systems may contain multiple displays, and therefore
multiple designs, we have found that most, if not all, comparative designs fall into one of these six places.

We emphasize that our taxonomy is focused on the visual design for comparison of complex objects. That
is not to say there are not other ways to approach comparison, for example by using analytic or statistical
methods to make the comparisons and then potentially using more standard visual designs to portray these
results. Similarly, there are many interaction techniques that are used to help with comparison. These
are also closely related to the designs we consider. For example, multiple-view coordination interaction
is often used to enhance visual comparison designs, for example to allow for interactive highlighting of
corresponding selected parts in juxtaposed views. Such interactions usually have a visual component, for
example the highlighting, that do appear in our taxonomy (e.g. as explicit encodings).

Although there are many possible ways to map the space of comparative visualizations, we believe that our
taxonomy is useful for a number of reasons. Foremost, it categorizes the space of designs in a manner that
allows related methods to be grouped by design, so that we can better generalize the constraints and advan-
tages of each form. Common issues and solutions can be transferred between similar designs even when the
underlying data or domain are quite different. The design categories also bring a connection with the percep-
tual/cognitive resources that people use in comparison: juxtaposition relies on memory to hold the multiple
items and make connections; superposition may make comparison more efficient by keeping information
in spatially local correspondence; explicit encodings parallel more analytic comparison where new models
are constructed. The taxonomy also seems to be complete (it covers all designs we have encountered), and
relatively clean (most designs clearly fall in one category).

2.1 Other Factors in Comparative Designs

Our focus in this paper is on the taxonomy of visual strategies for comparison that emerged from the
Dagstuhl workshop. However, some other methods are worth mention as they dovetail with visual strategies.

Interaction techniques are an invaluable tool in augmenting visual comparison, and have been applied in
many ways to address issues in comparative designs. Common interaction paradigms to assist comparison
include brushing and linking to make connections between related components, interactive rearrangement
and alignment to reorder objects to allow for easier comparison, and view control mechanisms specialized
to facilitate comparison (such as the guaranteed visibility mechanisms of TreeJuxtaposer [101]). The utility
of interaction applies across the space of visual designs.

Analytical and statistical tools provide not only an alternative to visual comparison, but can also serve to
complement it and enhance visual designs. Automatic comparison tools, such as alignment or distance met-
rics, provide some information that relate complex objects. Sometimes, such methods serve as a data reduc-
tion providing a new visualization problem in interpreting the automated comparisons. In other instances,
automated comparisons can be used to facilitate more detailed visual analysis. For example, registration can
be used to remove inconsequential differences so that mental alignment of basic forms need not be done be
the viewer, or may provide indications of the relationships, such as providing matching landmark points to
help connect between objects.

The perceptual and cognitive science communities have considered the question of visual comparison for a
while (see [46]). Recent results suggest that some kinds of comparisons are easy, whereas others are more
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difficult. For example, translated copies are easy to compare [87], but texture, orientation, scale, space,
and time may complicate comparison [10, 86, 141]. This is in part because visual comparison happens
at different semantic and cognitive levels [72, 121]. It is naı̈ve to call the difficulties in seeing differences
“change blindness” as it is really a more complex set of phenomena [108] that relate to limitations in the
mechanisms of perception [49]. Recent studies have shown that difficulties in detecting change can occur
even when the change takes place in a visually persistent image [99, 125, 126].

Animation, or temporally changing images, is a fundamental tool for many different types of visual compar-
ison. As it is used in many different ways to facilitate comparison, it interacts with our taxonomy in multiple
ways. The most straightforward use of animation is the serial display of the objects to be compared. In terms
of our taxonomy, we would consider this a juxtaposition in time as it predominantly requires the use of the
viewer’s memory and attention shifts to make connections between objects. The issues around “change
blindness” discussed above influence the effectiveness of such a strategy. The parallels between spatial and
temporal juxtaposition can also be seen in time-lapse imagery, a technique popularized over a century ago
by Muybridge’s photography. Keefe et al [79] explore the interchange animation and spatial juxtaposition:
they combine animation and small multiples displays in the study of dynamic data.

A related use of animation for comparison is to alternate the display of two aligned objects, such that the
differences “blink.” Such blink comparison is a form superposition design as it places objects to be compared
in the same space so that differences can be detected as low-level visual features (i.e. blinking).

Another use of animation is to help illustrate the connections between objects to be compared, for example
by showing animated transitions. While there is evidence that transitions can be helpful in understanding the
connections between complex objects [63], the underlying perceptual mechanisms suggest that the approach
may not scale well [5, 50, 51]. Such use of animation is considered an explicit encoding in our taxonomy,
and might either serve by itself, or to enhance a juxtaposed or superimposed design (i.e. as a design that
would fall into a hybrid category such as juxtaposition+explicit encoding).

3 A Survey of Comparison Visualizations

In this section, we survey a number of representative systems from the information visualization literature,
the designs of which explicitly support the comparison of complex objects. Rather than trying to identify
all systems that support comparison, we seek instead to show the diversity of application domains and data
types, and to show that the diversity of designs is mapped by our taxonomy.

The design space provides three primary categories (juxtaposition, superposition, and explicit representa-
tion). Each pairing of these categories creates a meaningful category in its own right, yielding a total of six
categories. In our survey, all comparative visualization designs fall into one of these categories. We will
note some outliers, systems with classifications that emphasize the boundaries of the categories, but we have
found such examples reinforce, rather than blur, the distinctions.

An overall map of the design space is shown in Figure 3. This triangular scatterplot shows where each design
falls into the categorization and allows the demographics of designs to emerge. Although the popularity of
different designs may be an artifact of our sparse sampling of examples, we feel the major trends can be
explained.

After a discussion of our survey methodology, the following subsections describe each category.

3.1 Survey Methodology

In order to understand the diversity of designs for the comparison of complex objects, we conducted a survey
of the information visualization literature and identified over 110 references that we felt included designs
for the comparison of complex objects. We note that this leads to more designs than systems, as many
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Figure 3: The design space provides three primary categories (juxtaposition, superposition, and explicit representation) with the three
intermediary categories. The visualization is taken from our database of systems that we have researched. Our database includes
a number of representative systems from the Information Visualization literature whose designs explicitly support the comparison of
complex objects, which demonstrates the diversity of the systems.

systems include several designs of different types (e.g. in providing multiple views). The overall result is
that each design does appear to fall into a single category (including the three basic categories and the hybrid
categories). Some systems may appear in multiple categories, as they contain multiple designs, each falling
into a different category.

A list of systems surveyed is listed in the appendix of this paper. In total, 111 systems, and 173 designs were
considered (again, many systems included multiple designs). Space concerns preclude us from discussing
each system, and the comparisons they contain, adequately. Instead, we provide a companion website (
http://graphics.cs.wisc.edu/Vis/CompIV) for this paper that contains a full list of the var-
ious systems and comparison designs we have surveyed, along with a brief explanation of how each was
categorized. By providing this table as a companion website, we are able to provide adequate descriptions
of each system, allow for sorting or filtering by various criteria, provide dynamic visualizations of the data,
and provide the opportunity to have the survey grow as we become aware of more systems.

While this survey is not exhaustive, we feel that it is sufficiently comprehensive to give an idea of how
the design space is populated. In addition to choosing a selective sampling of exemplary systems, we have
also systematically scanned the past four years of information visualization conference proceedings. While
some important examples are undoubtedly missing, the sampling is large enough for emerging patterns to
be considered informative and not just artifacts of sampling error.

Our selection criteria was based on whether we felt that a system (or a design within a system) was explicitly
intended to help with the comparison of some form of complex object. This criteria causes us to exclude
some categories of tools. For example, we do not include toolkits that might be used in assembling specific
visualization designs. Similarly, we do not include general purpose visualization tools for looking at (poten-
tially large quantities) of simpler objects, such as Tableau (http://www.tableausoftware.com//),
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JMP (http://www.jmp.com/), or Spotfire (http://spotfire.tibco.com/). To place such
general tools or toolkits would require examining a particular way in which they are used to perform com-
parison for a particular kind of complex object. Although such tools and toolkits may certainly be used
to realize a wide variety of comparative designs, their flexibility does not provide insight on designs for
comparison, as we seek to explore in this survey.

The criteria for “complex” objects is, admittedly, ad hoc. However, rather than trying to define a clear
boundary of what is, and is not, a visual comparison of complex object, we simply have aimed to include
enough examples to see the diversity in comparison designs. This has caused to to exclude some systems
that compare less complex objects, but also to omit systems that compare complex objects by applying
analysis that reduces the complexity of the objects, such as dimensionality reduction, and then uses standard
methods for the visualization of collections of simpler objects. Although the use of analysis to allow standard
visualization approaches to be applied for the comparison of complex objects is a common and important
approach, we have chosen to focus on the use of visual designs that directly compare complex objects. While
our design framework may apply to basic visualization approaches for collections of simple objects, such as
graphs, scatterplots, and parallel coordinate views, we are not sure if it would provide any new insights on
them.

The primary focus of our survey is to show the diversity of comparative designs, therefore we have used
our six categories (three basic designs and their combinations) as the primary organization. However, it
is useful to simultaneously categorize systems in other ways to show the diversity of applications of each
design type. For example, one might categorize systems by their application domain (such as genetics or
social connections), data type (such as networks or sequences) or some other categorization proposed in the
visualization community (such as the visual form categories of Bertin [14] and Lohse et al. [91]).

Although there are many ways to categorize such a survey, we feel that organization by comparative design is
a useful one. Systems within each category are diverse, spanning different data types and problem domains,
yet face similar problems and often can use similar solutions. In the following sections, we use a few
representative examples to illustrate the categories, and refer to the companion website and tables for more
examples.

3.2 Juxtaposition

Juxtaposition designs show the objects to be compared separately. This separation can occur either in time,
or in space. The key element in a juxtaposition design is that individual objects are shown independently.
Many examples of systems incorporating juxtaposition designs are given in the companion web site.

Juxtaposition usually occurs in space (placing different views next to each other). This is sometimes referred
to as a small multiples design [137], and depending on their appearance they can be named dual-views [102]
or side-by-side views [85]. Juxtaposition in time, a form of animation, was discussed earlier. Juxtapositions
in space or time share similar issues in they rely on memory for comparison, although this may be augmented
by pre-attentive pattern or motion perception.

At the surface, juxtaposition designs are easy to implement as they require little changes to what is required
to draw the individual objects. They can be applied to any visual representation. Juxtaposition works
best when visual processing can easily match objects, allowing for repeated patterns and differences to be
noticed. While perceptual science suggests certain kinds of changes are easier to factor [33, 104, 109, 118,
119,124,125], the design of good small multiples displays is an art [137]. In principle, scaling juxtaposition
to larger numbers of objects to compare is straightforward, as the independent displays simply must be
replicated, however such designs may not scale well perceptually.

One of the earliest demonstrations of juxtaposition is shown by the English Hexapla New Testament [135].
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Figure 4: Sequence Surveyor [2, 3] uses juxtaposition to compare aligned genomic sequences. Each row represents the sequence
of genes of an organism. Homologs (groups of matching genes) are assigned the same color. Colors are assigned based on the
position of genes in the reference genome (indicated by the green rectangle). In such a juxtaposition design, each object (here a row
representing a genome) is displayed independently: the viewer must make the connections between objects. In contrast, Figure 7
shows similar data in a design where the connections are explicitly encoded.

Here six English translations of the Bible are located in parallel columns, additionally with the Greek trans-
lation at the top. Such a display requires the viewer to identify differences. Because difference finding is
easy to automate, computational tools rarely use pure juxtaposition displays. For instance, the UNIX tool
diff was developed in the early 1970s [70] and outputs line-by-line difference of two files. This representa-
tion would be considered an explicit encoding, as it shows the relationships (differences) between texts. In
practice, visual tools for file comparison usually combine the two: visual difference utilities often explicitly
show the differences, but in the context of the files themselves, often with side-by-side views. Subsequent
sections discuss such explicit encoding designs and their combinations. Juxtaposition does appear in text
comparison systems. For example, SHERLOCK [146] compares two submissions side-by-side and online
tools such as Turnitin [131] demonstrate where files are copied from each other, from items already stored
in a repository and from Internet sites. Other web-browsing tools demonstrate Juxtaposition capability, such
as WebForager [17] where several web-pages are in a virtual space to allow the user to choose where to
browse.

A key challenge in juxtaposition designs is that because the objects are separated, it may be difficult for
a viewer to see the relationships between them. Pure juxtaposition designs arguably rely on the natural
ability to see pattern in repeated objects, which can be helped through careful design and placing the objects
sufficiently close together [137]. For example, Sequence Surveyor [2, 3], shown in Figure 4, attempts to
use perceptual principles to design juxtaposed views that enable pattern finding. However, designs often
attempt to assist a viewer with making these connections, leading to the hybrid categories (below) that blend
juxtaposition with another strategy. For instance, many of the later textual difference tools include some
explicit coordination and are thus found in the Juxtaposition/Explicit Encodings Section 3.6.

3.3 Superposition

Superposition designs show the objects to be compared in the same space. Such designs can be referred to
as overlay designs as they usually involve overlaying one object over another. This might be as simple as
making one object be semi-transparent (such as the X-ray lens of Shaw et al. [120]), or even allowing one
object to partially obscure another (as the two graphs in Figure 1b). Usually, the different objects are shown
in a symmetric, but slightly different way (in Figure1b, each time series is shown as a line, but with different
colors). As with juxtaposition designs, the display of the objects are independent although, sometimes,
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Figure 5: Jianu et al. [75] present an example of superimposition. In (a), protein interactions of a specific condition are superimposed
over the canonical model. In (b), the data is superimposed over a user-constructed model. By showing data in the same space, the
related parts are related visually. Used with permission.

small adjustments may be made to improve clarity and avoid occlusions.

One important element of superposition design is a sense of ‘the same space’. For some representations,
such as maps or charts with axes, the spaces in which objects are embedded are clear and can be made
equivalent. For other data types, defining a common spatialization so that multiple objects can be placed ‘in
the same space’ can be more challenging. An example of a spatialization created to allow for superposition
is the comparison of networks depicted as node-link graphs by laying out the union graph, and then showing
each network depicted on the same layout. An early example of using the union graph for layout is the
GEVOL [25] system, that shows each frame in an animated sequence using this consistent layout, while
Jianu et al. [75] superimpose proteomic networks and pathway data on a single view, as shown in Figure 5.

Another important element in superposition designs is to show several objects in the same space. This is
particularly difficult when the data is dense (such as an image). The simplest solution, making the images
semi-transparent (i.e. blending), has issues with clutter, inter-dependence, and scaling beyond a very small
number (usually 2 or 3). Methods such as color weaving [60] and attribute blocks [98] offer alternative to
blending based on alternating samples from different images. Malik et al. [92] provide an extension of this
basic approach: considering achieving superimposed images for comparisons at different scales, and larger
numbers of images to be overlaid. An example is shown in Figure 6.

More generally, superposition may use computation to find a common spatialization (e.g., an alignment or
registration) between data objects, but this differs from the hybrid superposition / explicit encoding category
(section 3.4) because these processes are not encoded visually, but rather used to define the space in which
the objects themselves are shown.

Superposition is commonly used for situations in which either the spatialization is a key component of the
data or the comparison or where different objects being compared are similar enough to one another that
they can be viewed on the same plane for the purpose of detecting similarity and difference between objects.
Superposition is very common in chart-style visualizations in the form of overlaying value sets onto the same
set of axes. Additionally, maps frequently superimpose different levels of data on a cartographic framework
(such as illustrated by Wood et al. [150]). Similarly, diagrams may be compared using superposition in
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Figure 6: Multi-image view of the voltage dataset series of Malik et al. [92]. This design addresses the problem of multi-way superpo-
sition by breaking the space into hexagonal regions. Each region depicts data from the different series, as indicated by the key in the
lower left. Used with permission.

order to view the similarity between different processes on the same plane. The space-filling complexity of
networks and images makes effective use of superposition challenging.

3.4 Explicit Encoding

The explicit encoding category includes design where the relationships between objects are shown explicitly
by providing a visual encoding of them. Such a design, by definition, requires that the relationships between
objects are known. This requires some pre-supposed sense of what relationships may be of interest, and
some mechanism to compute them explicitly. In contrast, other basic designs do not need to know the
relationships between objects: the objects are shown directly, and the viewer finds the relationships. The
use of explicit encoding provides a tradeoff: on one hand, it uses computation to find relationships, sparing
the viewer of that effort; on the other hand, it requires knowing what relationships to look for and having a
mechanism for finding them so that they can be presented.

Pure explicit encoding designs visually encode only the relationships between objects. The objects them-
selves are not visualized: but rather, a new object determined (usually computed) as the relationship between
the original objects is presented visually. We might think of such designs as a replacement of the original
objects with the new object that represents the relationships.

Pure explicit encoding designs always have a two step process where first the relationships among objects
are computed, and then these relationships are depicted. Simple examples of the first step include finding
similarities and differences, for example computing the difference between two series or the intersection
of two sets or graphs. The resulting relationships may have the same type as the original data (e.g., the
difference between two time series is also a time series), or it might have a different form (e.g., a sequence
alignment is different than a sequence). Several notable examples of purely explicit designs are given in the
companion web site.
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One issue in purely explicit encoding designs is that the relationships are removed from the context of the
original objects. This can be an advantage if the goal of the visualization is to focus on these relationships.
However, it can be difficult for a viewer to connect these relationships back to the objects themselves. Also,
the things other than the relationships that have been found will not be made visible to the viewer, so they
have less chances of finding them. This can happen for relationship types different than what what has
been computed, or in cases where the comparison computations are imperfect or sparse (e.g., connections
between sparse points may not provide much information about the connections of point in between).

Decontextualization is one reason why purely explicit encoding designs are rarely used alone. Explicit
encodings are often combined with other displays, either in a multiple view system, or in hybrid approaches.
The classic example is text comparison, such as the Unix diff tool which shows changed lines from files,
with little context to show where these lines come from. More modern, visual tools provide more context.

Another example of combating decontextualization is Mizbee [96] explicitly displays the synteny relation-
ships between two genomes, the overview chromosome is displayed around the reference and chromosomes
of interest are draw in the loop of the reference. Matching regions are delineated by curves and the informa-
tion is coordinated to additional visualization displays including a parallel axis plot.

In order to combat decontextualization, an explicit encoding of the representation may be superimposed
on top of a visualization encoding of the objects, or may be shown next to a visualization of the objects
(e.g., the views are juxtaposed). Note that in these cases, we are not necessarily using juxtaposition or
superposition as a comparative visualization design. For example, in an additive design, explicit encoding
of the relationships between an object and others are superimposed on a view of the object itself. Examples
of the additive strategy to combat decontexualization include synteny (gene matching) genetic sequence
viewers, such as Mizbee [96] and Mauve [31] (Figure 7). Connections between sequences are explicitly
shown with a representation of the sequences. However, the connections cannot be seen from the sequence
representation alone. For this reason, we still categorize additive designs in the explicit encoding category.
In contrast, hybrid designs use superposition (or juxtaposition) to show the relations between objects as well
as having relationships shown explicitly.

Comparison by explicit representation is most commonly used when the relationships between objects are
the subject of the comparison. Networks frequently use additive representation in comparison through
links in node-link diagrams. Flow data across geographic regions is another common example of explicit
representations in maps.

3.5 Juxtaposition combined with Superposition

The hybrid of juxtaposition and superposition designs has the contradiction that objects being compared are
both shown in separate spaces as well as in the same space. Many information visualization systems combine
juxtaposition and superposition views, however, these displays are separate (although possibly linked). Such
systems are more a statement of the value of both design types, rather than showing a true hybrid design.
For example FromDaDy [71] uses superposition to show an overview comparing a large number of flight
trajectories, and then uses a juxtaposition to show details of smaller subsets of this overview. Mixes of
superposition and juxtaposition are also common in creating comparisons of comparisons.

One exception to this contradiction occurs when visualizations are composed in more than two dimensions.
This scenario allows for superposition in two dimensions and juxtaposition in the rest. While visualization
in more than two dimensions raises perceptual concerns, tools like the 2.5D related metabolic pathway
visualization [15] (Figure 8 leverage projection to conduct comparison using this type of hybrid design.

As discussed earlier, animating by showing a sequence of views to compare can have elements of both
juxtaposition and superposition.
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Figure 7: Mauve [31] uses an additive explicit encoding design to compare conservation trends over a set of aligned genomic
sequences. Subsequences (contigs) not conserved by the reference are removed, while matching contigs are explicitly linked. If these
links are removed, the conservation patterns are no longer visible. Used with permission.

3.6 Juxtaposition combined with Explicit Encoding

The combination of juxtaposition and explicit encoding includes designs that show multiple objects to be
compared separately while explicitly showing specific relations that have been computed. This combination
of techniques is particularly valuable because each technique can address some of the shortcomings in
the other. Explicit encodings can help the user make the connections between juxtaposed views, and the
juxtaposed views can give context for the encoded relationships. A number of examples of this combination
of mechanisms are given in the companion web site.

One key subcategory of juxtaposition/explicit encoding hybrid designs is coordinated multiple views brush-
ing, especially coordinated brushing (linked highlighting). Such designs assist users in connecting between
juxtaposed objects by showing corresponding parts when one is selected.

Another category of juxtaposition/explicit encoding hybrid designs are additive, where linkages are shown
visually overlaid over a juxtaposed view. For example, in sequence comparison visualizations, arrows link
corresponding blocks between juxtaposed representations of the different sequences. Textual difference
tools provide an example of juxtaposition and explicit encoding. Vdiff [11] is shown in Figure 9 shows lines
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Figure 8: 2.5D proteomic network comparison [15] uses extra dimensions to simultaneously use juxtaposition and superposition
for network comparison. Manipulating the viewing perspective changes how much each comparison technique is used. Used with
permission.

connecting text elements to denote items of text that have been inserted, unchanged or deleted. Other tools
such as ItLv [100] displays changes of text as bars that are aligned on a timeline.

One type of such a juxtaposition/explicit encoding approach displays two networks independently. Addi-
tionally, it computes a merged graph and shows it in the middle of the two graphs being compared. The
color coding is used to identify differences and similarities in the merged graph [8]. Color coding is used in
another approach where constraint layout techniques are used to compare a number of networks. Similar el-
ements (nodes) of the network are drawn in the same level to facilitate process of identifying the similarities,
while color coding is used to denote the differences [117].

A final category of juxtaposition/explicit encoding hybrid designs uses abstraction of each object in order
to create a more effective juxtaposition. For example, networks may be displayed as juxtaposed node-link
diagrams with the common arcs highlighted in all.

3.7 Superposition combined with Explicit Encoding

The combination of superposition and explicit encoding of relationships between objects includes designs
that show multiple objects within the same coordinate system (for example, as transparent overlays on top
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Figure 9: Vdiff [11] demonstrates explicit encoding combined with juxtaposition. Files are shown juxtaposed to provide the viewer
with context, and specific relationships are shown through the use of lines to highlight insertion, similarity and emission. Used with
permission.

of one another) but also make use explicit visual representations of the connections between objects.

The combination of superposition and explicit encodings may be redundant, or even in conflict. Super-
position already encodes relationships between objects by spatial proximity. This provides little space for
explicitly encoding relationships (since the related objects are already proximal). However, encoding the
relationships by both proximity and some explicit visual representation can be useful, for example to em-
phasize the connections by the redundancy, or to show multiple types of relationships. A table of example
designs using superposition/explicit encoding designs is provided in the companion web site.

One type of superposition/explicit design uses the explicit encodings to emphasize patterns in the overlaid
views, often to help manage the clutter created when complex objects are superimposed. For instance, the
multifield graph technique [115] superposes a pair of data sets and then derives a flow volume from the
fusion of the superposition.

Another subcategory of superposition/explicit design involves the abstraction of complex objects into a su-
perposition view and explicitly encoding the relationships between these objects. For example, DataMeadow
[41] uses this technique as comparison between different objects. Comparison is first conducted by creating
a parallel-coordinate style DataRose for different collections of objects filtered over either a standard query
or fusion filter. These DataRose objects are then connected using links to show relationships between their
respective objects. Topographic BGPlay [29] (Figure 10) inverts this approach and overlays a topographic
map of ISP prefix locations on top of ISP data networks, managing network layout to correspond to the
topography of the overlying map.

Superposition/explicit designs are frequently used in situations where a summarization of an object or group
of objects can be represented using a superpositioned visual glyph, such as a star plot. Networks frequently
make use of this technique by blending node-link data with superposition representations of data points at
the nodes. Images can also make use of these techniques by relying on superposition for the spatializa-
tion of object data and overlaying glyphs representing the data at particular points. Maps can use heatmap
overlay for superposition encodings and explicitly represent flow across geographic regions using additive
encodings. However, diagrams do not frequently use these techniques as the spatialization of the data-
points is predefined in a manner such that its overlay corresponds to the relationships within the data, thus
eliminating the need to explicitly encode the relationships.
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Figure 10: Topographic BGPlay [29] uses explicit encoding and superposition to visualize ISP prefix data. Relationships between the
prefixes are shown as a network, while an overlying topographic map encodes region information for the ISPs. Used with permission.

4 Conclusion

The wide range of existing systems shows the importance of visual comparison. However, while this broad
range of tools has a great diversity in the kinds of data, application domain, and designs used to show com-
parisons, all of these designs are built from the three primary building blocks: juxtaposition, superposition,
and explicit encodings.

While there are plenty of successful examples of comparative designs of varying types, there are few guide-
lines to help choosing between strategies when creating a design for a new problem. It is tempting to seek
the superiority of one approach over another, but in reality it seems that each has its tradeoffs. Juxtapositions
are simple to create and can be scaled naively, but place too much of the comparative burden on a viewer’s
memory. Superpositions better allow the viewer to use their perceptual system rather than memory, but
have issues with clutter and scalability. Explicit encodings can offload the burden of comparison from the
viewer, but require the relationships between objects to be known and must address issues of decontextual-
ization. Developing a better understanding of these tradeoffs seems valuable for helping guide design: these
simplified statements do not capture the complexity of the perceptual, cognitive, or design issues.

Hybrid designs seem to offer the best mechanism toward managing the tradeoffs: each type of hybrid is
capable of addressing issues in the blocks from which it is built by bringing in advantages of its compo-
nents. However, hybrid designs also bring issues such as complexity and clutter. There is clearly a set of
design issues and principles that needs to be developed. The tradeoff between design complexity and task
performance needs to be better understood.

The concept of comparative tasks should also be better understood. Comparison is not a single task, but
rather, a range of tasks that a viewer may need to perform given a number of related objects. Many basic
tasks can be enumerated, such as finding similarities, differences and trends, spotting outliers, or determining
causality of changes. However, a complete taxonomy of such tasks, and their implications for visualizations
that support them, is an open question.

The survey of existing solutions show that the issues of visual comparison have been addressed in a wide
variety of ways. There is no single right answer, but rather, a wide range of ways to assemble the basic
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elements depending on the specific needs of the problem. The range of existing solutions provides a large
repertoire of useful design elements. However, there are many basic design problems for which good so-
lutions are not known, such as the superposition of many objects, or assisting a user in tracking a complex
set of correspondences. Some of these basic elements begin to run into some very basic perceptual and
cognitive limits [49].

Researchers who are faced with the challenge to develop novel visual depictions will benefit from a better
understanding of comparative designs, especially when faced with the challenges of new datasets. Scala-
bility is a key challenge: new comparison problems bring more items to compare, more complexity in the
items to compare. Many of the existing approaches scale poorly. New problems also bring more diversity
in the kinds of data, but also the kinds of relationships viewers may seek to understand in the data. A better
understanding of the design space, to facilitate new designs, will be valuable in addressing these new needs.
We believe that by breaking visual comparison into basic elements, we will be able to generalize successful
design patterns, including coupling them with interaction and analysis.

Even some very basic design issues have many open questions. For example, layout in juxtaposed views
is fundamental, but not well-explored. One common issue in juxtaposed views is that order matters. Even
though the choice of how the various views are ordered may be arbitrary, it has significant effects on how the
array of sub-displays are perceived and how comparisons can be made. Different arrangements may make
some comparisons easier or harder. While the ability to use arrangement to emphasize some aspects of the
data has been explored in some systems, such as the work of Slingsby et al. [127], we are far from having a
full understanding of the issues in ordering and layout for juxtaposed views.

By focusing on the common elements of how visual comparison is performed, independent of the data types
or domains, we can gain insight on comparison in general, as well as find ways to transfer designs between
applications. While our survey is not encyclopedic, it provides numerous examples that point to common
challenges, as well as common solutions. In our own work, this has already lead to cross-fertilization
between domains (e.g., applying ideas from genomic sequence comparison to literary scholarship [2,3]), as
well as inspiring us to focus on problems we see as central (e.g., the perceptual issues in juxtaposed designs).

Our survey introduces one new way of looking at comparison: the basic forms of the visual design. We be-
lieve that there are other ways to explore comparison in general (e.g. without regard to the specifics of what
is being compared). Our initial taxonomy based on design strategy shows the potential for general consid-
eration of comparison. We are exploring other ways to look at comparison across the range of applications,
in addition to exploiting the lessons of our initial understanding.

As the amount of data available grows, the need for comparative tools will also grow. There have been
many successes at developing visual tools that support comparison. In this paper, we have tried to begin
the process of learning from the examples to develop general principles that will facilitate the design of
future tools. The taxonomy of basic design types provides a way to see commonality across the diversity of
applications, suggesting a number of directions for future research.
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A Appendix: Systems Considered

We show here a list of systems considered in producing our taxonomy. Further details are available on the
associated web site (http://graphics.cs.wisc.edu/Vis/CompIV).

2 1/2 D Related Metabolic
Pathways [15]

Ac plagiarism detection system [52] Acoustic Visualization [32] ACT [18]

ActiviTree [144] AdaptiviTree [133] AlignScope [76] Animated Causal Diagrams [77]

Bubble Sets [27] Cerebral [12] CGView Server [57] CMap3D [36]

code swarm [105] COMBO [43] COMPAM [88] Composite Categorical Patterngram
(CCP) [110]

Contrast Treemaps [136] DAG Tree Comparison
Visualization [55]

DataMeadow [41] Dendogram-Matrix Views [20]

DEVise [90] diff [70] DNAVis [47] Document Cards [130]

Dotplot [23] DynaVis [63] Edge Explorer [92] EMDialog [66]

English Hexapla New
Testament [135]

ETE [69] Exemplar-based Visualization [21] Explorer [64]

FacetMap [128] FlowMap [59] FromDaDy [71] G-compass [78]

Generalized Tree Maps [143] GeneShelf [83] Geographically Weighted
Interactive Graphics [38]

Geovisualization Mashup [150]

GEVOL [25] Graphical Histories [62] Growing Polygons [42] Heat Maps for Incomplete and
Partially Ranked Data [82]

Hierarchical Edge Bundles [67] Hierarchical Structuring of Dense
Graphs via Stratification [84]

HiPP [106] HNMap [93]

Hotmap [48] Integrated Proteomic Data
Visualization [75]

ItLv [100] Layout Constraint Graphs [117]

Lydia [95] ManyNets [53] Mauve [31] MERL forensic surveillance
system [73]

Mizbee [96] Motion Visualization
Framework [79]

Multi-dimensional data cube
visualization [39]

Multi-image view [92]

Multi-variate, Time-varying and
Comparative Visualization with

Contextual Cues [151]

Multifield-Graphs [115] Multiple VIR Interfaces [85] Network Centralities
Visualization [37]

NodeTrix [65] NVSS [123] OntoVis [122] Outlier-Preserving Parallel
Coordinates [103]

Parallel Sets [13] Parallel Tag Clouds [28] Pathline [97] Phenoclustering [58]

PhotoMap [30] Phrase Nets [140] Polaris [129] ResultMap [24]

Scatterplot Matrix [40] Scented Widgets [148] Seevolution [45] SellTrend [89]

Semantic Graph Visualiser
(SGV) [8]

Sequential Document
Visualization [94]
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Simultaneous Graph Drawing
Algorithms [44]
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Trendalyzer and two static
variants [113]
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